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HIGH DIMENSIONALITY AND H-PRINCIPLE IN PDE

CAMILLO DE LELLIS AND LÁSZLÓ SZÉKELYHIDI JR.

Abstract. In this note we present “an analyst’s point of view” on the Nash–
Kuiper Theorem and, in particular, highlight the very close connection to
turbulence—a paradigm example of a high-dimensional phenomenon. Our
aim is to explain recent applications of Nash’s ideas in connection with the
incompressible Euler equations and Onsager’s famous conjecture on the energy
dissipation in 3D turbulence.
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1. Introduction

In this same issue of the Bulletin of the American Mathematical Society, M. Gro-
mov wrote a highly inspiring and visionary article on the legacy of John Nash’s
papers on isometric embeddings. There is surely no better choice of author for
such a task—indeed, it was Gromov who realized that Nash’s works on isometric
embeddings not only solved the existence problem as it was formulated at the time,
but actually opened the door to a completely new type of mathematics reaching far
beyond differential geometry. We cannot resist quoting him directly: What Nash
discovered is not any part of Riemannian geometry, neither has it much (if anything
at all) to do with classical PDE.

In his article Gromov paints a picture of the “New Land” discovered by Nash
with exceptional clarity, breath, and depth. One of the key aspects of Nash’s
theorems emphasized in the article is high dimensionality (“infinite dimensional
representations”). Whilst in the case of the smooth embedding theorem of Nash
[64] the high dimensionality is of geometric nature, in the C1 embedding theorem
of Nash and Kuiper [56, 63] it is rather of analytic nature. In this note we would
like to present “an analysts’ point of view” on the latter theorem and in particular
to highlight the very close connection to turbulence—a paradigm example of a
high-dimensional phenomenon! Our aim is to explain recent applications of Nash’s
ideas in connection with the incompressible Euler equations and Onsager’s famous
conjecture on the energy dissipation in 3D turbulence.

2. Isometric embeddings, Nash, and Gromov’s h-principle

In his book [44] Gromov developed convex integration, a far-reaching generaliza-
tion of the perturbation technique of Nash 1954/1956. The most common applica-
tion of convex integration is to provide solutions to a certain generic class of partial
differential relations, consisting of a global topological condition and a differential
inequality representing the nonsingularity of some geometric quantity, i.e., the non-
vanishing of some function of the derivatives. Examples include Smale’s sphere
inversion and the existence of n linearly independent nonvanishing divergence-free
vector fields (see the book of Gromov [44] and his article in this issue). In such
problems if a solution exists at all, then—obviously—there exist infinitely many
solutions: indeed, the solution space is open in an appropriate function space. It
is a curious fact of life that finding a solution becomes much more difficult if there
is no uniqueness (even locally!), because then, while looking for a solution, there is
no way to characterize it, or at least to formulate a clear preference. In simplified
terms convex integration produces a large family of local perturbations which keep
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the topological condition whilst achieving the required nonvanishing. Of course the
situation is in reality more complicated: for instance, one can easily ensure by a
local perturbation that the derivative of a function on the unit circle f : S1 → R is
not zero in any given small neighborhood; however it will always have zero deriva-
tive somewhere. Indeed, the main issue is to understand how the global topology
affects the local differential structure. For situations where the topology “wins”
over local geometry, Gromov introduced the term “h-principle”.

2.1. A classical problem in differential geometry. The problem of isomet-
ric embeddings of Riemannian manifolds consists of a global topological condition
(being an embedding) and a system of partial differential equations (being an isom-
etry), so it seems at first glance to be a completely different kind of problem. For
concreteness let us consider a smooth n-dimensional Riemannian manifold (Σn, g).
A continuous map u : Σ → RN is isometric if it preserves the length of curves,
namely if

(1) �g(γ) = �e(u ◦ γ) for any C1 curve γ ⊂ Σ,

where �g(γ) denotes the length of γ with respect to the metric g:

(2) �g(γ) =

ˆ √
g(γ(t))[γ̇(t), γ̇(t)] dt .

As customary, in local coordinates we can express the metric tensor g as1

g = gijdxi ⊗ dxj .

For a general C1 map v the tensor (∂iv · ∂jv) dxi ⊗ dxj is usually called the “pull-
back” of the Euclidean metric, and thus it is customary to denote it by v�e; in
general v�e is only positive semidefinite and it is positive definite (hence a metric)
if and only if v is an immersion. With this notation at hand we can rewrite con-
dition (1) for C1 maps as u�e = g, and such identity alone guarantees that u is
an immersion. Then, if u is C1, (1) is equivalent to a system of partial differential
equations, which in local coordinates takes the following form:

(3) ∂iu · ∂ju = gij .

The existence of isometric immersions (resp. embeddings) of Riemannian man-
ifolds into some Euclidean space is a classical problem, explicitly formulated for
the first time by Schläfli; see [73]. Clearly, if the dimension of Σ is n, (3) consists

of sn := n(n+1)
2 equations in N unknowns. A reasonable guess would therefore be

that the system is solvable, at least locally, when N = sn: this was in fact what
Schläfli conjectured in his note.

In the first half of the twentieth century Janet [51], Cartan [16], and Burstin
[15] had proved the existence of local isometric embeddings in the case of analytic
metrics, precisely when N = sn. For the very particular case of 2-dimensional
spheres endowed with metrics of positive Gauss curvature, Weyl in [85] had raised
the question of the existence of (global!) isometric embeddings in R3. Weyl’s
problem was solved by Lewy in [58] for analytic metrics, and Louis Nirenberg settled
the case of smooth metrics in his PhD thesis in 1949 (in fact Nirenberg’s Theorem
requires C4 regularity of the metric tensor; see [65] and [66]). A different proof
was given independently by Pogorelov [69] around the same time, building upon
the work of Alexandrov [1] (see also [70]). Moreover in the case of Weyl’s problem

1Here and in the rest of this note we follow Einstein’s summation convention.
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it was proved by Herglotz and Cohn-Vossen, already before the work of Lewy, that
C2 immersions are uniquely determined up to rigid motions; cf. [22,45] and see also
[76] for a thorough discussion. Incidentally, the linearized (infinitesimal) rigidity
in Weyl’s problem, due to Blaschke [4], was of crucial importance in Nirenberg’s
existence proof—a nice example of how uniqueness leads to existence.

2.2. The paradox of Nash. Nash started working at Schläfli’s general question,
which was considered a formidable problem, shortly after his PhD, apparently be-
cause of a bet with a colleague at the MIT department he had just joined as a
young faculty member, cf. [62]. As John Milnor wrote recently “Nash was never
a reasonable person” and indeed, although at the time everything indicated that
the solvability of (3) needs a high dimensional target, in his 1954 note [63] Nash
astonished the geometry world and proved that the only true obstructions to the
existence of isometric immersions are topological. As soon as N ≥ n+ 1 and there
are no such obstructions, then there are in fact plenty of such immersions.

Nash gave a proof of this statement for N ≥ n + 2 and just remarked that a
similar one could be proved for N ≥ n + 1; the details were then given in two
subsequent notes by Kuiper [56]. For this reason the resulting theorem is called
nowadays the Nash–Kuiper Theorem on C1 isometric embeddings. In order to
state it, we follow Nash and introduce first the notion of “short maps”, namely
maps which decrease lengths.

Definition 2.1. Let (Σ, g) be a Riemannian manifold. An immersion v : Σ → R
N

is short if we have the inequality h := v�e ≤ g in the sense of quadratic forms; i.e.,
in local coordinates we have hijw

iwj ≤ gijw
iwj for any tangent vector w. If the

strict inequality < holds, we then say that v is strictly short.

The Nash–Kuiper Theorem is then the following

Theorem 2.2. Let (Σ, g) be a smooth closed n-dimensional Riemannian manifold,
and let v : Σ → R

N be a C∞ short immersion with N ≥ n+1. Then, for any ε > 0
there exists a C1 isometric immersion u : Σ → RN such that ‖u − v‖C0 ≤ ε. If v
is, in addition, an embedding, then u can be assumed to be an embedding as well.

This theorem shows—and it was Gromov who understood the deep implications
of this interpretation—that the system (3) of nonlinear partial differential equations
is sufficiently “soft” so that in a certain sense it behaves more like a differential
inequality. In particular, although the set of isometries obviously cannot form
an open set in the space of C1 maps, it is C0 dense in the open set of strictly
short maps. This type of abundance of solutions is a central aspect of Gromov’s
h-principle. In addition, note that when Σ is a smooth closed manifold, we can
make any immersion v : Σ → RN short by simply multiplying it by a small positive
constant. Hence Theorem 2.2 reduces the existence of isometries (resp., isometric
embeddings) to that of immersions (resp., embeddings), which is guaranteed by the
classical theorem of Whitney in a codimension which is rather low compared to the
codimension in Schläfli’s conjecture.

3. Soft PDEs and thresholds

3.1. Relaxation. A good characterization of nonlinear differential structures which
are soft is still missing, although partial answers exist based on L. Tartar’s formal-
ism, compensated compactness, and relaxation; see for instance [36, 54]. In order
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to explain the basic idea of this approach, let us again look at the system of par-
tial differential equations (3) with some fixed smooth g and consider a sequence of
(smooth) solutions {uk}k, uk : S2 → R

3. Then the sequence of derivatives |∂iuk|2 is
uniformly bounded, hence by the Arzelà–Ascoli theorem there exists a subsequence
uκ converging uniformly to some limit map u. The limit u must be Lipschitz, and
an interesting question is whether u is still a solution, i.e., isometric. This would
follow from some better convergence, for instance in the C1 category. If the met-
ric g has positive curvature and the maps uk are sufficiently smooth, their images
will be convex surfaces: this, loosely speaking, amounts to some useful information
about second derivatives which will improve the convergence of the subsequence uκ

and result in a limit u with convex image.
If instead we only assume that the sequence uk consists of approximate solutions,

for instance in the sense that

∂iu
k · ∂juk − gij → 0 uniformly,

then even if g has positive curvature and the uk are smooth, their images will not
necessarily be convex, as we can (nowadays!) infer from the Nash–Kuiper Theorem.

Let us nonetheless see what we can conclude about the limit u. Consider a
smooth curve γ ⊂ S2. Then uk ◦ γ is a C1 Euclidean curve, and our assumption
implies

(4) �(uk ◦ γ) → �(γ).

On the other hand the curves uk ◦γ converge uniformly to the Lipschitz curve u◦γ
and it is well known that under such type of convergence the length might shrink
but cannot increase. We conclude that

(5) �(u ◦ γ) ≤ �(γ) ,

in other words the map u is short. Recall that, by Rademacher’s theorem, u is
differentiable almost everywhere: it is a simple exercise to see that, when (5) holds
for every Lipschitz curve γ, then

(6) ∂iu · ∂ju ≤ gij a.e.,

in the sense of quadratic forms. Thus, loosely speaking, one possible interpreta-
tion of Theorem 2.2 is that the system of partial differential inequalities (6) is the
“relaxation” of (3) with respect to the C0 topology.

3.2. Thresholds. Now, for C2 isometric immersions there are higher order con-
straints, most notably the Theorema Egregium of Gauss. This is in fact one crucial
ingredient in the proof of rigidity for Weyl’s problem. In particular such rigidity
implies that any C2 isometric immersion of the standard sphere in R3 must map it
to the boundary of some ball of radius 1. On the contrary the Nash–Kuiper Theo-
rem implies the existence of C1 isometric embeddings which crumple the standard
sphere into an arbitrarily small region of the 3-dimensional space.

This implies a counterintuitive dichotomy between “rough” and “smooth” (i.e.,
below and above C2) solutions of (3) in low codimension. An interesting open ques-
tion, which will be explored further in this note, is whether there exists a “threshold
regularity” which distinguishes between these two phenomena. A particular case
of this question is the following

Problem 3.1. Let N = 3 = n+ 1. Is there a threshold θ0 ∈ ]0, 1[ such that:

• C1,θ solutions of the Weyl problem are rigid for θ > θ0;
• the Nash–Kuiper Theorem holds for C1,θ immersions when θ < θ0?
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Indeed the question of which regularity one might reach with Nash’s 1954 scheme
turns out to be an interesting and difficult open problem, with ramifications beyond
the isometric embedding problem. In particular, as we have pointed out recently, a
celebrated conjecture of Lars Onsager in the theory of fully developed turbulence
shares many similarities with Problem 3.1, and it can be approached with an it-
eration which is similar to Nash’s 1954 scheme; see [14, 34, 37, 79]. Although we
will discuss its context and the precise definitions later, we state here Onsager’s
conjecture so that the reader could appreciate the formal analogy with Problem
3.1.

Conjecture 3.2. Consider periodic 3-dimensional weak solutions of the incom-
pressible Euler equations, where the velocity v satisfies the uniform Hölder condi-
tion

(7) |v(x, t)− v(x′, t)| ≤ C|x− x′|θ,
for constants C and θ independent of x, x′ and t.

(a) If θ > 1
3 , then the total kinetic energy of v is constant;

(b) For any θ < 1
3 , there are v for which it is not constant.

Of course Problem 3.1 deals with a stronger property, namely the rigidity (and
thus “uniqueness”) of the solution. A more stringent analog in the case of the Euler
equations would then claim an appropriate uniqueness result for the velocity v (for
instance for the corresponding Cauchy problem). On the other hand, as already
mentioned (and will be explained briefly in Section 10), a crucial point in Problem
3.1 is whether a suitable version of Gauss’s Theorema Egregium holds or not at low
regularity. We can regard Gauss’s Theorema Egregium as an additional identity
valid for sufficiently regular solutions of (3), pretty much as the conservation law
for the energy is an additional identity that sufficiently regular solutions of the
Euler equations must fulfill.

In the rest of this note:

• we will review Nash’s approach to Theorem 2.2, highlighting its “nonlinear
flavor” (cf. Section 4);

• we will give a survey on the state of the art for Problem 3.1 and related
questions (cf. Section 5);

• we will give a survey on the most recent results on Onsager’s conjecture
(cf. Sections 6);

• we will discuss an analog of Nash’s iteration which produces counterintuitive
continuous solutions of the Euler equations (cf. Section 7);

• we will explain how suitable adjustments in the latter iteration leads to
Hölder solutions (cf. Section 8), and to a related h-principle statement (cf.
Section 9);

• we will point out further directions and related open questions (cf. Section
10).

4. Nash’s 1954 scheme

In his subsequent celebrated 1956 note on the topic (see [64]) Nash turned his
attention to more regular isometric immersions (resp., embeddings). In particular,
he proved their existence if the dimension N is sufficiently high, in fact larger than
what Schläfli conjectured. If the Nash–Kuiper Theorem could be regarded as a
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curiosity, the 1956 paper gave a final proof that the abstract worlds of Riemann
coincide completely with the usual Euclidean submanifolds. It is well known that
the impact of Nash’s second work goes way beyond its specific application to the
isometric embedding problem: his celebrated strategy to treat “hard implicit func-
tion theorems” has had a profound influence in analysis, in mathematical physics,
and in geometry in the subsequent 60 years. The impact of his first note has been,
comparatively, much more modest.

And yet we wish to point out that even the 1954 paper reaches far beyond
differential geometry. Its approach to construct solutions of (3) can be regarded as
a fully nonlinear iteration scheme that is highly original and might be applied to
other partial differential equations. In classical perturbation methods for nonlinear
equations, the linearization plays the key role: in this sense the 1956 scheme of Nash
is no exception. In contrast, in the 1954 scheme the leading order term is quadratic
in the perturbation and the linearization becomes negligible. That scheme is thus
genuinely infinite dimensional, and it is not entirely surprising that it leads to highly
irregular solutions.

4.1. Stage. Let us start reviewing the main ideas in Nash’s proof of Theorem 2.2.
Let (Σ, g) be a smooth, closed n-dimensional Riemannian manifold. The proof
of Theorem 2.2 relies on the following proposition, which Nash calls “a stage”
(cf. [63, Page 391]):

Proposition 4.1. Let u : Σ → R
N be a smooth strictly short immersion. For any

δ > 0 there exists a smooth strictly short immersion ũ : Σ → RN such that 2

‖u− ũ‖0 ≤ δ ,(8)

‖g − ũ�e‖0 ≤ δ ,(9)

[u− ũ]1 ≤ C‖g − u�e‖1/2
0 ,(10)

for a constant C which depends only upon Σ. If u is injective, then ũ is also
injective.

Even without estimate (10) this proposition is quite powerful. It says that the
set of almost isometries is dense (in the uniform topology) in the set of short immer-
sions—a first hint at the type of relaxation statement and underlying h-principle
explained in the previous sections. In fact, this type of global approximation state-
ment is key not only in the proof of the Nash–Kuiper Theorem on C1 isometries,
but also in the proof of Nash’s theorem on C∞ isometries [64].

4.2. Steps and spirals. The main idea behind Proposition 4.1 is the following
simple perturbation step: Let u : Σ → RN be a smooth immersion, and let U ⊂ Σ
be a single chart with local coordinates (x1, . . . , xn). Assuming, as Nash does,3

that N ≥ n + 2, there exist two linearly independent unit normal vectors ζ, η to
u(U), i.e., ζ, η : U → R

N such that for any i = 1, . . . , n,

(11) |ζ| = |η| = 1, ζ · η = 0, and ∂iu · ζ = ∂iu · η = 0.

2As usual, for maps u : Σ → RN , we define the C1 seminorm [u]1 = ‖Du‖0 using an atlas of
smooth charts {Uα} on Σ. Moreover, for any symmetric (0, 2) tensor h on Σ, we denote by ‖h‖0
the supremum of the Hilbert–Schmidt norm of the matrices hij(p) for p ∈ Σ.

3The extension to N = n+ 1 is contained in the papers of Kuiper [56]. The main difference is
the form of the perturbation; instead of a spiral as in (12) one needs to use a corrugation, which
cannot be written down quite so explicitly. We refer the interested reader to [26,78].
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Next, let ξ be a unit vector in Rn and set

(12) ũ(x) := u(x) +
a(x)

λ

(
sin(λx · ξ)ζ(x) + cos(λx · ξ)η(x)

)

for some amplitude a = a(x) and frequency λ 
 1. One directly calculates

(13) ∂iũ(x) = ∂iu(x) + a(x)

(
cos(λx · ξ)ζξi − sin(λx · ξ)ηξi

)
+O

(
1

λ

)
,

so that, because of (11),

(14) ∂iũ · ∂j ũ = ∂iu · ∂ju+ a2(x)ξiξj +O

(
1

λ

)
.

In other words, the spiral perturbation in (12) leads to a new map ũ, whose induced
metric, given by (14) is—up to an error of size λ−1—increased in the direction of
ξ by an amount a2 and is essentially not changed in orthogonal directions. By a
suitable (large) choice of λ we then achieve

Lemma 4.2. Let u : Σ → R
N be a smooth immersion. Let U ⊂ Σ be an open

subset of Σ contained in a single chart, let a ∈ C∞
c (U) be a smooth function with

compact support, and let ξ ∈ Rn be a unit vector. For any δ > 0, there exists a
smooth immersion ũ : Σ → RN such that

‖ũ− u‖0 ≤ δ ,(15)

‖∂iũ · ∂j ũ− ∂iu · ∂ju− a2ξiξj‖0 ≤ δ ,(16)

[ũ− u]1 ≤ C‖a‖0 ,(17)

for a dimensional constant C.

Now, let us assume in addition that u : Σ → RN is strictly short. This amounts
to the condition that the “metric error” h := g − u�e is positive definite, i.e., it
is also a metric on Σ. Then the implementation of Lemma 4.2 in the proof of
Proposition 4.1 depends ultimately on being able to decompose an arbitrary metric
h on Σ in a finite sum4 as

(18) h =
∑
α

a2α(dψα)
2,

where each aα is compactly supported in a single chart Uβ ⊂ Σ and in local coor-
dinates ψα(x) =

∑n
i=1 ξ

α
i xi for some unit vectors ξα ∈ Rn. Gromov calls this the

Kuratowski–Weyl–Nash decomposition, and we refer the reader to his article for
interesting generalizations and open questions.

For each term in this decomposition we can apply Lemma 4.2 and use the ob-
vious estimate ‖aα‖0 ≤ ‖h‖0 to obtain a (finite) sequence of corrections u0 =
u, u1, . . . , um, where m is the number of terms in the sum. The final immersion
ũ := um then satisfies the conclusions of Proposition 4.1.

4In the case of noncompact manifolds this will indeed be a locally finite sum.



HIGH DIMENSIONALITY AND H-PRINCIPLE IN PDE 255

4.3. Iteration and convergence. It is not difficult to prove Theorem 2.2 from
Proposition 4.1, at least for the case of immersions, by a simple iteration.5

However, it turns out that a restricted version of Proposition 4.1 already suf-
fices for iteratively removing the error, once we have a “sufficiently good” first
approximation. In order to simplify the discussion, let us restrict from now on to
a single chart; in other words, we assume that U ⊂ Rn is a bounded simply con-
nected domain, g = (gij) is a smooth metric (i.e., positive definite form) on U , and

u : (U, g) → R
N is a smooth strictly short immersion.

By assumption (g−DuTDu)(x) is positive definite on U . Therefore there exists
γ > 0 so that g−DuTDu−2γId is positive definite. In particular u is also a strictly
short immersion of the manifold (U, g̃), where g̃ := g − γId. Applying Proposition
4.1 once to u : (U, g̃) → RN with δ > 0, we obtain a new smooth immersion u0

such that ‖DuT
0 Du0 − g̃‖0 ≤ δ. Then g −DuT

0 Du0 = γId +O(δ), and by choosing
δ > 0 sufficiently small, we may therefore ensure that the new metric error satisfies

(g −DuT
0 Du0)(x) ∈ Cδ/γ for all x,

where

(19) Cr :=

{
A ∈ Symn×n :

∣∣∣∣ A
1
n |trA|

− Id

∣∣∣∣ < r

}
.

Geometrically Cr is a convex cone of positive definite matrices with opening “angle”
r centered around the half-line {λId : λ > 0}. The advantage of introducing the
cone Cr is that it allows us to localize the decomposition (18) in the space of metrics,
resulting in a minimal decomposition. This is based on the following elementary
linear algebra lemma:

Lemma 4.3. There exists a dimensional constant r0(n) > 0 and sn = n(n+1)
2 unit

vectors ξk ∈ R
n with the following property. Any matrix A ∈ Cr0 can be written in

a unique way as a positive linear combination

(20) A =

sn∑
k=1

μ2
k(A)ξk ⊗ ξk,

where the μk are smooth positive 1/2-homogeneous functions on Cr0 .

In other words the set of rank-one semidefinite matrices {ξk ⊗ ξk} generates a
convex cone of positive semidefinite matrices, which contains Cr0 . Since the number
sn is the dimension of the space of symmetric matrices, it is clearly the minimal
number for which the decomposition of Lemma 4.3 can be valid in Cr0 . A similar
decomposition to (20), which is valid for all positive definite A, can also be proved
using a locally finite partition of unity in the space of positive definite matrices
(this is contained in Nash’s paper [63], see also [32, 78]), although then the sum
in (20) is only locally finite and the number of nonvanishing terms is significantly
larger than sn. Such a decomposition has also proved useful in other contexts; see
[43, Lemma 17.13] and [60].

Next, set δq = ε2−q, and define for all q ∈ N

(21) gq := g − δqId .

5For embeddings we need an additional argument and refer the reader to [32,39,78] for details.
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We construct inductively a sequence of smooth immersions

uq : (U, gq) → R
N

with metric error

(22) ‖gq −DuT
q Duq‖0 ≤ c0δq+1,

where the dimensional constant c0 < 1 will be chosen later. Note that here we do
not require uq to be short with respect to the metric gq, but obviously it will be
strictly short with respect to the metric g. Set

(23) hq := gq+1 −DuT
q Duq.

It is easy to check, that hq(x) ∈ Cr0 for all x, provided c0 is sufficiently small
(depending only on r0). Therefore, we can define the amplitudes

(24) aq,k(x) := μk

(
hq(x)

)
,

and obtain from Lemma 4.3

(25) hq(x) =

sn∑
k=1

a2q,k(x)ξ
k ⊗ ξk .

We can proceed by adding successively the n(n+1)/2 spiraling perturbations given
in (12) corresponding to ξk and amplitude aq,k(x). Observe that from (25) we have

‖aq,k‖0 ≤ ‖hq‖
1/2
0 ≤ 2δ

1/2
q+1. Since

DuT
q Duq + hq = gq+1,

we obtain a new immersion uq+1 : U → RN such that

‖uq+1 − uq‖0 ≤ δq+1 ,

‖gq+1 −DuT
q+1Duq+1‖0 ≤ c0δq+2 ,

[vq+1 − vq]1 ≤ Cδ
1/2
q+1 .

(26)

From these estimates we easily conclude the C1 convergence to an isometry.

4.4. The quadratic term wins. From a PDE point of view it is interesting to
take a closer look at the calculation leading to (14), which forms the basis of the
iteration above. Let us write (12) as

ũ(x) = u(x) + w(x),

so that the new metric has the form

(27) ∂iũ · ∂j ũ = ∂iu · ∂ju+ (∂iu · ∂jw + ∂ju · ∂iw)︸ ︷︷ ︸
=:L

+ ∂iw · ∂jw︸ ︷︷ ︸
=:Q

.

The decomposition above simply gives the perturbation induced in the metric tensor
by the perturbing map w as a sum of the parts which are, respectively, linear
and quadratic in w. Recalling the orthogonality conditions (11) we see that w is
orthogonal to ∂iu for all i. Therefore

∂iu · ∂jw = ∂j(∂iu · w)− ∂i∂ju · w = −∂i∂ju · w,
so that

(28) ‖L‖0 ≤ C[u]2‖w‖0 = O(λ−1) .
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On the other hand

(29) Q = a2
(
cos2(λξ · x) + sin2(λξ · x)

)
ξiξj +O(λ−1) = a2ξiξj +O(λ−1) .

We see that the specific oscillatory form of the perturbation w in (12) makes the
quadratic part much more important than the linear one: this seems a rather
“odd” approach from a classical PDE point of view. From (28) we also see that
along the iteration the underlying frequencies λq need to converge to +∞ very
fast. In particular it is clear that along the iteration the second derivatives of the
immersions diverge.

5. C1,α
isometric maps

As we have seen, the construction above cannot possibly produce isometric im-
mersions which are C2. In the specific case of Weyl’s problem, where n = 2 and
N = 3, this is of course not surprising in light of the classical rigidity results of
Herglotz and Cohn-Vossen. An interesting question is to understand if and where
there is a sharp border on the Hölder scale C1,θ, θ ∈ (0, 1) between the dramatically
different behavior of solutions of Weyl’s problem for low versus high θ.

In a series of papers in the 1950s (cf. [5–8]) Yu. Borisov showed that the rigidity of
Weyl’s problem can in fact be extended to C1,θ immersions, provided θ is sufficiently
large.

Theorem 5.1. Let (S2, g) be a surface with C2 metric and positive Gauss curva-
ture, and let u ∈ C1,θ(S2;R3) be an isometric immersion with θ > 2/3. Then u(S2)
is the boundary of an open convex set.

Borisov’s theorem is more general, but the statement above avoids the introduc-
tion of Pogorelov’s concept of bounded extrinsic curvature (cf. [26]): Borisov proves
such property without any assumption on the topology of the surface and then ex-
ploits the work of Pogorelov [70] to conclude the local convexity of the image. We
will discuss later (cf. Section 10) a more recent, very short, proof of Borisov’s theo-
rem discovered in [26], which exploits the same key computation of Constantin, E,
and Titi’s proof of part (a) of Onsager’s conjecture—another remarkable analogy
with Problem 3.1!

On the other hand for sufficiently small Hölder exponents the Nash–Kuiper con-
struction remains valid:

Theorem 5.2. Let (Σ, g) be a C2 Riemannian manifold of dimension n. Any
short immersion u : Σ → Rn+1 can be uniformly approximated with C1,θ isometric
immersions with

(a) θ < 1
1+n(n+1) when Σ is a closed ball;

(b) θ < 1
1+n(n+1)2 when Σ is a general compact n-manifold.

The maps can be chosen to be embeddings if u is an embedding.

Case (a) of this theorem was announced in [9] by Yu. Borisov, based on his
habilitation thesis, under the additional assumption that g be analytic. A proof
with n = 2 appeared more than 40 years later, cf. [10]. The general statement of
Theorem 5.2 has been proved in [26].

We will discuss below the most relevant aspects of the argument and, in par-
ticular, the significance of the thresholds in (a) and (b). Observe that in the first
interesting case of 2-dimensional disks, we have 1

7 : there is thus a significant gap
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between this and the “rigidity threshold” 2
3 in Theorem 5.1. It is of course very

tempting to ask whether there is a single sharp interface distinguishing between
the two behaviors. Gromov in his article mentions 1

2 (cf. Question 36 therein) as
a possible threshold, and we will discuss in Section 10 some facts in favor of the
latter conjecture. In the case of 2-dimensional disks the very recent paper [40] gave
the first improvement of Borisov’s local exponent, namely we have the following

Theorem 5.3. Let D ⊂ R2 be a closed disk, and let g be a C2 metric on it.
Then any short immersion u : D → R

3 can be uniformly approximated with C1,θ

isometric immersions if θ < 1
5 . The maps can be chosen to be embeddings if u is

an embedding.

5.1. The Hölder Nash iteration. Let U ⊂ Rn be an open domain with a smooth
Riemannian metric g. Assume for the moment that we can carry the iteration
as in Section 4.3 and consider once more the sequence of smooth immersions
uq : (U, gq) → RN from Section 4.3. Recall that

(30) ‖gq −DuT
q Duq‖0 ≤ c0δq+1,

where gq = g−δqId. The map uq+1 is obtained by adding sn := n(n+1)/2 spiraling
perturbations, so that

uq+1 = uq +

sn∑
k=1

wq+1,k ,

each of the form

wq+1,k(x) =
aq,k(x)

λq+1,k

(
sin(λq+1,kx · ξk)ζq,k(x) + cos(λq+1,kx · ξk)ηq,k(x)

)
,

where the amplitudes aq,k are given by (25), the unit vectors ζq,k, ηq,k are nor-
mal to uq,k−1(U), and the frequencies λq,1 ≤ · · · ≤ λq,sn still need to be chosen
appropriately. For convenience set λq+1 = maxk λq+1,k = λq+1,sn .

As we have seen,

(31) ‖aq,k‖0 ≤ ‖gq −DuT
q Duq‖

1/2
0 ≤ δ

1/2
q+1.

Hence, neglecting lower order terms, we obtain

(32) [uq+1 − uq]1+m � δ
1/2
q+1λ

m
q+1 for m ∈ N.6

By classical interpolation we conclude

(33) [Duq+1 −Duq]θ � δ
1/2
q+1λ

θ
q+1 ,

where [f ]θ denotes the usual Hölder seminorm

sup
x,y∈U,x�=y

|f(x)− f(y)|
|x− y|θ .

The convergence in C1,θ depends then on whether the sum
∑

q δ
1/2
q λθ

q converges. In

particular, if we can choose {δq, λq}q∈N such that

(34) λq := λq and δq := λ−2θ0
q

for some λ > 1 and θ0 ∈ (0, 1), then θ0 will be the threshold Hölder exponent for
the convergence of the scheme. We are confronted with two issues: we wish to have

6Here and in what follows, A � B means that A ≤ cB for some universal constant c, and
A � B if A � B and B � A.
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a fast convergence of δq to 0 and a tame blow-up of λq. On the other hand the
latter must be chosen large in order to make some errors negligible.

To get an idea of whether such a choice of δq, λq is possible, recall the computation
in Section 4.4 and in particular the estimate in (28) for the error. Based on (31)
and (32)7 we expect8 for uq,1 := uq + wq+1

‖gq + a2q,1ξ
1 ⊗ ξ1 −DuT

q,1Duq,1‖0 � ‖aq,1‖0[uq]2
λq+1,1

� δq+1δ
1/2
q λq

λq+1,1
.

At the second step we will however bring into play the second derivative of uq,1,

which we expect to be of size δ
1/2
q+1λq+1,1. After sn steps, we can guess for uq+1 =

uq+1,k an estimate of type

(35) ‖gq+1 −DuT
q+1Duq+1‖0 � δ

1/2
q+1δ

1/2
q λqλ

−1
q+1,1 +

sn∑
k=2

δq+1λq+1,k−1λ
−1
q,k .

This turns out to be correct, although the discussion above is somewhat simplified:
there are several other error terms which must be computed. Taking (35) for
granted, in order to keep (30), we need to have

δq+2 �δ
1/2
q+1δ

1/2
q λqλ

−1
q+1,1,

δq+2 �δq+1λq+1,k−1λ
−1
q+1,k .

If we optimize upon our choice of the parameters, these relations lead to

(36) δsnq+2 ∼ δ
sn−1/2
q+1 δ

1/2
q λqλ

−1
q+1 .

In view of (34), the latter identity takes the form

λ(q+1)−2sn(q+2)θ0 ∼ λ−(2sn−1)(q+1)θ0−θ0q+q .

Taking the logarithm, we easily conclude

(37) θ0 =
1

1 + 2sn
.

5.2. Borisov’s exponents and beyond. The somewhat exotic exponents of The-
orem 5.2 can now be easily explained: the threshold θ0 is related to the number of
steps in a stage, i.e., the number of spirals needed to obtain a full-rank correction
of the metric error. In the case of Theorem 5.2(a) we can use a finite number of
steps in the general Nash–Kuiper scheme to get a new short map from which we
can proceed as in Section 4.3: taking advantage of the minimal decomposition (20)
we reach the threshold 1

1+2sn
= 1

1+n(n+1) . In the case of Theorem 5.2(b) we have

to use an additional partition of unity in Σ, and to control the overlaps of different
charts requires a factor of (n + 1) more spirals. In other words each stage of the

iteration consists of (n+1)sn = n(n+1)2

2 steps. Note that the general decomposition
in (18) would lead to even more steps and hence to a lower Hölder exponent.

7Since ‖uq+1 − uq‖2 should blow up, δ
1/2
q λq should also blow up, and the exponential ansatz

gives the estimate ‖uq‖2 � δ
1/2
q λq .

8This is only the part of the metric error coming from the linear part L of the perturbation.
It can be checked that the error coming from the quadratic part Q is smaller.
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The heart of the matter in Theorem 5.3 is that in two dimensions we can hope
to use, at each stage, a conformal transformation of coordinates that brings the
metric error in diagonal form, thus allowing us to decompose it as the sum of two
rank-one terms rather than three. In the next section we will give a glimpse of some
important technical obstructions for Theorem 5.2. The same obstructions appear
in the proof of Theorem 5.3 but the additional source of nontrivial complications
is that the regularity of the conformal change of coordinates needed at each stage
deteriorates dramatically as q increases: it is a priori not even clear that such a
scheme would at all converge in C1. Indeed the related estimates do not allow us to
impose an exponential growth of the frequencies, and we have to resort to a double
exponential ansatz.

It is not difficult to see that, if we enlarge the codimension, the argument of
Theorem 5.2 gives higher thresholds, since then we can add spirals in parallel. In
fact for N = n + sn and Σ equal to a ball, a straightforward adaptation of the
proof in [26] gives the threshold 1

3 . More work is needed to reach the threshold
1
2 when N is even higher, but this does not require any new insight. Instead a

substantial new idea is needed to overcome 1
2 : this was achieved by A. Källen in

[52]. Källen’s approach has the remarkable outcome that the Nash 1954 iteration
scheme can be pushed “almost” up to C2: for any metric of class g ∈ C1,θ with any
θ < 1, one obtains isometric embeddings of class C1,θ. Although very interesting
from the PDE point of view, this result has less geometric impact: the codimension
needed is so large that it exceeds the one needed by Gromov to prove the existence
of smooth isometric approximations when g is smoother. (We note in passing that
it is still not known whether the C2 regularity for g is enough to show the existence
of C2 embeddings: the best result in that direction, due to Jacobowitz, needs a
C2,β metric with positive β; cf. [50].)

5.3. Mollification and commutator estimate. The scheme outlined in the pre-
vious section has one drawback: there is a “loss of derivative” in the estimates. In
particular observe that the perturbation wq,1 involves taking vector fields normal to
uq and thus depends certainly on the first derivative of uq. This loss of derivatives
propagates along the steps and stages of the iteration: the jth derivative of uq+1

depends certainly on the (j+1)-th, (j+2)-th, . . . and (j+ s∗n)-th derivatives of uq,
where s∗n is the number of steps needed. This of course brings in higher and higher
derivatives of the metric as well: it is in order to overcome this issue that Borisov
assumes real analyticity of the metric g. (Note that he also needs real analyticity
for the starting short map u0, but this can be assumed without loss of generality
by a first regularizing procedure.)

As is well known in the PDE literature (following the other landmark work of
Nash [64]!), one way to overcome a loss of derivative in an iteration scheme is to
introduce a mollification at each stage—one may hope that this works provided the
convergence rate is very fast. Thus, rather than defining uq+1 in terms of uq, we can
define it in terms of uq ∗ ϕ	, where ϕ is a standard mollifier and � = �q a suitable
mollification scale. The introduction of the latter scale is a real advantage only
if �q ≥ λ−1

q . However, under this assumption we have to ensure that (uq ∗ ϕ	)
�e

is close enough to u�
qe. In order to do this we exploit crucially two facts: the

smallness of g − u�
qe and an elementary commutator estimate between products

and convolutions, which we state here.
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Lemma 5.4. Let ϕ ∈ C∞
c (Rn) be symmetric and such that

´
ϕ = 1. Then for any

r ≥ 0 and θ ∈ (0, 1] there is a constant C(r, θ, n) such that the following estimate
holds for any pair of Cθ functions f and g:

(38) ‖(fg) ∗ ϕ	 − (f ∗ ϕ	)(g ∗ ϕ	)‖r ≤ C�2θ−r‖f‖θ‖g‖θ.

This simple estimate due to Constantin, E, and Titi has a very elementary
proof and plays a crucial role both in their proof (cf. [24]) of the “rigidity part”
of Onsager’s conjecture and in the short proof given in [26] of Borisov’s rigidity
theorem; cf. Section 10 below.

6. The Euler equations and Onsager’s conjecture

The incompressible Euler equations describe the motion of a perfect incompress-
ible fluid. Written down by L. Euler over 250 years ago, these are the continuum
equations corresponding to the conservation of momentum and mass of arbitrary
fluid regions. In Eulerian variables they can be written as

(39)

⎧⎨
⎩

∂tv + (v · ∇)v +∇p = 0,

div v = 0,

where v = v(x, t) is the velocity and p = p(x, t) is the pressure. We will focus on
the 3-dimensional case with periodic boundary conditions. In other words we take
the spatial domain to be the flat 3-dimensional torus T3 = R

3/(2πZ)3.
A classical solution on a given time interval [0, T ] is defined to be a pair (v, p) ∈

C1(T3 × [0, T ]). Despite the rich geometric structure underlying these equations
(see, e.g., [23] and references therein), little is known about classical solutions except

(i) local well-posedness (i.e., existence and uniqueness for short time) in Hölder
spaces C1,θ, θ > 0 (see [59]) or Sobolev spaces Hs, s > 5/2 (see [41, 53]);

(ii) the celebrated blow-up criterion of Beale, Kato, and Majda [2] and its
geometrically refined variants; see, e.g., [25].

6.1. The paradox of Scheffer. There are various notions of weak solutions (see
for instance the survey articles [36] and [80]), and despite the fact that uniqueness
in general fails for such notions (see Theorem 6.1 below and [30, 31, 35] for further
results), weak solutions have been studied because of their possible relevance to
homogeneous 3-dimensional turbulence [18,24,42,68]. In particular we will consider
pairs (v, p) : T3 × [0, 1] → R3 × R which form a solution of (39) in the sense of
distributions.9

In contrast with the local well-posedness for classical solutions of (39), weak
solutions are in general quite “wild” and exhibit a behavior which is very different
from classical solutions. Here we merely state Scheffer’s amazing result from 1993
and refer to previous surveys [36,80] for further results on distributional solutions.

Theorem 6.1. There exist infinitely many nontrivial weak solutions v∈L∞(T3×R)
of (39) which have compact support in time.

This theorem was proved first by V. Scheffer [72] in two dimensions for
v ∈ L2(R2 × R). A. Shnirelman [74] subsequently gave a different proof for

9Recall the classical computation that (v · ∇)v = div (v⊗ v) if div v = 0, so that distributional
solutions are defined for any v ∈ L2(T3 × [0, 1]).
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v ∈ L2(T2 × R). The statement for arbitrary dimensions d ≥ 2 and bounded
velocities was obtained in Rd by [34].

6.2. Energy conservation and Onsager’s conjecture. For classical solutions
(i.e., if v ∈ C1) the total energy

E(t) :=
1

2

ˆ
T3

|v(x, t)|2 dx

is conserved by the flow induced by (39), so that E(t) = E(0). However, for weak
solutions this may not be true. Indeed, one of the cornerstones of 3-dimensional
turbulence is anomalous dissipation: it is an experimentally observed fact that the
rate of energy dissipation in the vanishing viscosity limit (more precisely the infinite
Reynolds number limit) stays above a certain nonzero constant. This phenomenon
is expected to arise from a mechanism of transporting energy from large to small
scales, thereby leading to a cascade of energy.

Assuming that a turbulent fluid is represented by a solution of the incompress-
ible Navier–Stokes equations, in the vanishing viscosity limit one obtains the system
(39). Since classical solutions conserve the energy, in this (vaguely defined) limiting
process one expects to find weak solutions of the Euler equations. It was L. On-
sager in 1949 [68] who first formulated the corresponding mathematical problem:
is there a threshold between C0 and C1 regularity for energy conservation? Based
on calculations in Fourier space, he formulated the statement in Conjecture 3.2 (in
fact he had a nonrigorous proof of part (a)).

Part (a) of the conjecture is fully resolved [24, 42], whereas concerning part
(b) substantial progress has been made in the last five years, starting from [37],
although the full conjecture with threshold exponent 1/3 remains an outstanding
open problem. Having fixed a certain specific space of (at least L2) functions X,
these results can be classified in the following two categories:

(A) There exists a nontrivial weak solution v ∈ X of (39) with compact support
in time.

(B) Given any smooth positive function E = E(t) > 0, there exists a weak
solution v ∈ X of (39) with

(40)
1

2

ˆ
|v(x, t)|2 dx = E(t) ∀ t.

Obviously, both types lead to nonconservation of energy and would there-
fore conclude part (b) of Onsager’s conjecture if proved for the space X =
L∞(0, 1;C1/3−ε(T3)). So far the best results are as follows.

Theorem 6.2.

(i) Statement (A) is true for X = L1(0, 1;C1/3−ε(T3)).10

(ii) Statement (B) is true for X = L∞(0, 1;C1/5−ε(T3)).

Statement (B) has been shown forX = L∞(0, 1;C1/10−ε) in [38], whereas P. Isett
in his PhD thesis [46] was the first to prove statement (A) forX = L∞(0, 1;C1/5−ε),
thereby reaching the current best “uniform” Hölder exponent for part (b) of On-
sager’s conjecture. Subsequently, T. Buckmaster, the two authors, and P. Isett
proved statement (B) for X = L∞(0, 1;C1/5−ε) in [14]. Finally, statement (A) for

10v ∈ L1(0, 1;C1/3−ε(T3)) if and only if there exists an integrable function A : (0, 1) → R+

such that |v(x, t)− v(x′, t)| ≤ A(t)|x− x′|
1
3
−ε for all t, x, x′.
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X = L1(0, 1;C1/3−ε(T3)) has been proved recently in [13], based on a clever mod-
ification of the scheme by T. Buckmaster [12]. The basic construction underlying
all these results was first introduced in [37] and draws heavily on the 1954 paper of
Nash [63].

6.3. Relaxation, subsolutions, and h-principle. Before explaining the basic
construction of weak solutions for Theorem 6.2 above, it is useful to look at some
of the similarities between systems (3) and (39). These similarities are based on
the observation that both systems can be written as a differential inclusion. More
precisely, both systems fit into the framework introduced by L. Tartar in the context
of compensated compactness in the 1970s [36,84], which amounts to separation into
a linear system of conservation laws and nonlinear pointwise constitutive relations.
For the system of isometries (3), if we introduce the unknown Z = Du, this amounts
locally to

(41) curl Z = 0, ZTZ = g .

Similarly, the Euler equations (39) can be written as

(42)
∂tv + div u+∇q = 0

div v = 0

⎫⎬
⎭ , v ⊗ v − u =

2

3
ē Id.

Here the “state variable” is the triple Z = (v, u, q) with u being a traceless sym-
metric 3× 3 matrix-valued function and ē = 1

2 |v|2 is the kinetic energy density.
One of the questions studied by Tartar was the weak closure of systems of the

form (41) or (42): to understand the relaxation of the constitutive relations when
one considers a sequence of approximate solutions Zj converging weakly. For the
system (41) this is equivalent to the question we looked at in Section 3.1: short
maps correspond to solutions of

(43) curl Z = 0, ZTZ ≤ g.

The analogous relaxation for (42) has been computed in [35]. It is given by

(44)
∂tv + div u+∇q = 0

div v = 0

⎫⎬
⎭ , v ⊗ v − u ≤ 2

3
ēId.

Solutions of this system are called “subsolutions” of the Euler equations, and in
[34, 35] it was shown that any subsolution can be approximated weakly* in L∞

by bounded (but highly discontinuous) weak solutions of (39). The construction is
based on a well-known path in the literature for differential inclusions [11,17,29,61];
in particular it exploits the Baire category theorem (although one can give a proof
using the alternative “Lipschitz convex integration” developed in [61]). We refer to
[36] for a detailed exposition of this work.

Dealing with merely bounded (i.e., v ∈ L∞) weak solutions of the Euler equations
(39) is somewhat reminiscent of dealing with Lipschitz11 solutions for (3). As
pointed out by Gromov [44], such maps need not be isometric in the sense of (1) and
may in fact collapse entire submanifolds to a single point. Nevertheless, even if (1)
holds, the existence of a large class of Lipschitz isometries is much less surprising
than the Nash–Kuiper Theorem, since we are allowed to “fold” our Riemannian

11Recall that Lipschitz maps are differentiable almost everywhere, hence we mean here Lips-
chitz maps satisfying (3) almost everywhere.



264 CAMILLO DE LELLIS AND LÁSZLÓ SZÉKELYHIDI JR.

manifold. In this way one can even impose that the target has the same dimension
as the manifold; cf. [55]. Gromov in his article refers to the corresponding scheme
as “broken convex integration”.

The notion of subsolutions of the Euler equations is closely connected to the
Reynolds equations in classical turbulence theories. Let v be a (deterministic or
random turbulent) weak solution of (39) and consider a certain averaging process
leading to the decomposition

v = v + w,

where v is the “average” and w is the “fluctuation”. The Euler equations (39) for
v transform into

(45)

⎧⎪⎨
⎪⎩

∂tv̄ + div (v̄ ⊗ v̄) +∇p̄ = −div R̄,

div v̄ = 0,

where

(46) R̄ = v ⊗ v − v ⊗ v = w ⊗ w.

Being an average of positive semidefinite tensors, it is easy to see that R̄ is positive
semidefinite. The system (45) is equivalent to (44). Indeed, given a subsolution
(v̄, ū, q̄) define

R̄ =
2

3
ē Id− v̄ ⊗ v̄ + ū, p̄ = q̄ − 2

3
ē.

Then R̄ is positive semidefinite and (v̄, p̄, R̄) is a solution of (45). Conversely, any
solution (v̄, p̄, R̄) of (45) with R̄ ≥ 0 defines a subsolution (v̄, ū, q̄) with energy
density

(47) ē =
1

2

(
tr R̄ + |v̄|2

)
=

1

2
tr (R̄+ v̄ ⊗ v̄)

by setting

ū = R̄− 2

3
ē Id + v̄ ⊗ v̄, q̄ = p̄+

2

3
ē.

In light of this interpretation of R̄, it is natural to define the generalized energy
tensor of a subsolution (v̄, p̄, R̄) to be the time-dependent tensor

(48)

ˆ
T3

(v̄ ⊗ v̄ + R̄) dx

and the associated generalized total energy to be by its trace (cf. (47))

E(t) =
1

2

ˆ
T3

|v̄|2 + tr R̄ dx.

Observe that the system (45) is highly under-determined. An important problem in
the theory of turbulence is to obtain further restrictions on the tensor R̄ in the form
of constitutive (closure) relations. Thus an interesting question is whether there are
additional constraints in the specific case where R̄ arises—in analogy with (46)—as
a weak limit

(49) R̄ = (w − limk→∞vk ⊗ vk)− v̄ ⊗ v̄,

where vk ⇀ v̄ is a sequence of Hölder-continuous weak solutions. Indeed, weak
convergence has long been considered as a useful tool to study “deterministic tur-
bulence” [57]. It follows from [35, 81] that no such constraints exist for L∞ weak
solutions. It was recently shown in [31] that no additional constraints exist also
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for Hölder-continuous solutions and that therefore any positive definite tensor can
arise as (49) from C

1/5−ε weak solutions of Euler:

Theorem 6.3 (h-principle). Let (v̄, p̄, R̄) be a smooth solution of (45) on T
3×[0, T ]

such that R̄(x, t) is positive definite for all x, t. Then there exists for any θ < 1/5
a sequence (vk, pk) of weak solutions of (39) such that

|vk(x, t)− vk(x
′, t)| ≤ Ck|x− x′|θ for all x, x′

holds,

vk
∗
⇀ v̄ and vk ⊗ vk

∗
⇀ v̄ ⊗ v̄ + R̄ in L∞

uniformly in time, and furthermore for all t ∈ [0, T ]
ˆ
T3

vk ⊗ vk dx =

ˆ
T3

(v̄ ⊗ v̄ + R̄) dx.

Theorem 6.3 says that any smooth subsolution of the Euler equations can be
weakly* approximated by Hölder-continuous weak solutions with given energy ten-
sor. Observe that the uniform approximation in the Nash–Kuiper statement in
Theorems 2.2 and 5.2, i.e., convergence uj → u in C0 for a sequence of C1 solutions
of (3), can be equivalently stated as the weak* convergence in L∞ of a sequence
Zj of Hölder-continuous solutions of (41). Therefore, Theorem 6.3 can be seen as
the analogue of the Nash–Kuiper Theorem.

7. The Nash scheme for the Euler equations

In this and in the next section we review the key ideas leading to the proofs of
Theorem 6.2. Although the basic scheme follows the one introduced in [37] by the
authors, the presentation here uses crucial ideas that were introduced subsequently
in the PhD theses of T. Buckmaster and of P. Isett.

The construction of continuous and Hölder-continuous solutions of (39) follows
Nash’s basic strategy in the sense that at each step of the iteration we add a highly
oscillatory correction as the spiral in (12). Note that both (39) and the equation
of isometries (3) are quadratic—the oscillatory perturbation is chosen in such a
way as to minimize the linearization and make the quadratic part of leading order
(cf. Section 4.4). Then, a finite dimensional decomposition of the error (cf. (25)) is
used to control the quadratic part. There are, however, two important differences:

• The linearization of (3) is controlled easily by using the extra codimen-
sion(s) in Nash’s proof (cf. the choice of perturbation in (12) being or-
thogonal to the previous image). For Euler, the linearization of (39) leads
to a transport equation, which is very difficult to control over long times
and seems to require a kind of CFL condition. This issue is still the main
stumbling block in the full resolution of Onsager’s conjecture and it will be
examined in detail in the next section.

• The exponent 1/3 of Onsager’s conjecture requires a sufficiently good cor-
rection of the error at each single step, whereas in the Nash iteration sev-
eral steps (sn steps) are required—this leads to the threshold exponent
(1 + 2sn)

−1 in Theorem 5.2. Consequently, 1-dimensional oscillations, as
used in the Nash–Kuiper scheme and, more generally, in convex integra-
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tion, cannot be used12 for part (b) of Conjecture 3.2. Thus, instead of
convex integration, one needs to use special families of stationary flows as
the replacement of (12) (compare (25) with (72) below).

The goal is to construct a sequence of subsolutions (vq, pq, Rq), i.e., solutions of

(50)

⎧⎨
⎩

∂tvq + div vq ⊗ vq +∇pq = −divRq,

div vq = 0 ,

and iteratively remove the error. As a first observation note that if one is only in-
terested in measuring the “distance” of a smooth pair (vq, pq) from being a solution
of (39), then only the traceless part of Rq is relevant: we can write

Rq = ρqId + R̊q,

where R̊q is a traceless 3 × 3 symmetric matrix, since div (ρqId) = ∇ρq. Hence

if R̊q = 0, then vq is a solution of the Euler equations (perhaps with a different
pressure). Recall that we also aim in Theorem 6.2 at also satisfying (40). A
natural analogy of the metric error g −DuT

q Duq and the Reynolds stress can then
be obtained by choosing a sequence Eq = Eq(t) with Eq(t) → E(t) and by setting

ρq(t) :=
1

3(2π)3

(
Eq+1(t)−

1

2

ˆ
T3

|vq(x, t)|2 dx
)
,

Rq(x, t) := ρq(t)Id + R̊q(x, t)

(cf. (21) and (23)). Thus, our approximations will consist of smooth solutions
(vq, pq, Rq) of (49) such that trRq is a function of time only, and we will use ‖Rq‖0
to measure the distance of the pair (vq, pq) from being a solution of (39)–(40).

An important difference between the Reynolds stress and the metric error is that
the latter is uniquely determined from the metric g and the short map u, whereas
the tensor R̊ is not at all uniquely defined from (49). However it is possible to

select a good “elliptic operator” which solves the equations div R̊ = f . The relevant
technical lemma is the following one.

Lemma 7.1 (The operator div−1). There exists a homogeneous Fourier-multiplier
operator of order −1, denoted

div−1 : C∞(T3;R3) → C∞(T3;S3×3
0 ),

such that, for any f ∈ C∞(T3;R3) with average
ffl
T3 f = 0, we have

(a) div−1f(x) is a symmetric trace-free matrix for each x ∈ T3;
(b) div div−1f = f .

12However a “multistep iteration” using 1-dimensional oscillation is possible in the case of
Euler as well, as has been recently shown by Isett and Vicol in [49]. This allows the authors to
implement the iteration for a general class of active scalar equations, albeit leading to suboptimal
Hölder exponents.
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7.1. The approximating sequence and its size. In analogy with the Nash
construction our aim is to build a sequence of triples (vq, pq, R̊q) solving (49) which
converge uniformly to a triple (v, p, 0). Actually, in what follows we will mostly
focus on the velocity v. The sequence will be achieved iteratively by adding a
suitable perturbation to vq and pq. We thus set

wq = vq − vq−1.

As in the Nash–Kuiper iteration, the size of wq will be controlled with two param-
eters. The amplitude δq bounds the C0 norm

‖wq‖0 � δ
1/2
q .(51)

Up to negligible errors the Fourier transform of the perturbation wq will be localized
in a shell centered around a given frequency λq. Hence,

‖∇wq‖0 � δ
1/2
q λq .(52)

Along the iteration we will have δq → 0 and λq → ∞ at a rate that is at least
exponential. For the sake of definiteness and in analogy with (34) we may think

(53) λq := λq and δq := λ−2θ0
q

for some λ > 1 (although in the actual proofs a slightly super-exponential growth is
required). Thus, as already discussed in the case of the Nash–Kuiper iteration, the
positive number θ0 is the threshold Hölder regularity which we are able to achieve
through the iteration.

As in the Nash–Kuiper iteration, the perturbation wq+1 is added to “balance”
the error Rq: following the discussion of the previous section, we can expect that
Rq ∼ wq+1 ⊗ wq+1, and for this reason we assume

‖R̊q‖0 ≤ c0δq+1,(54)

‖∇R̊q‖0 � δq+1λq(55)

for some small dimensional constant c0 (in analogy with (22)). It turns out that
along the iteration the perturbation pq − pq−1 behaves quadratically13 in the per-
turbation wq and thus

‖pq‖0 � δq,(56)

‖∇pq‖0 � δqλq .(57)

So far we have not made any assumption on the size of the time derivatives. A
key remark of Isett in [46] compared to [37,38] is that advective derivatives behave
much better than simple time derivatives. For instance, since

∂tvq + (vq · ∇)vq = −∇pq − divRq ,

we have

(58) ‖∂tvq + (vq · ∇)vq‖0 � δqλq .

13This will lead to Hölder continuity of the pressure with exponent 2θ. Such an improvement
in the Hölder exponent can also be obtained directly from Schauder estimates for the pressure
from the equation −Δp = div div v ⊗ v. We learned about this improved Schauder estimate from
L. Silvestre first, but the same observation was also made independently by P. Isett in [47].
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Note that, instead, ‖∂tvq‖ � δ
1/2
q λq. We have thus “gained” an extra factor δ

1/2
q .

The most important idea of Isett is that this gain holds also for the advective
derivative of the Reynolds stress:

‖∂tR̊q + (vq · ∇)R̊q‖0 � δq+1δ
1/2
q λq .(59)

Finally, the control on the energy will be assumed to be of the following nature: set

Eq(t) = (1− δq+1)E(t)

so that

(60) |ρq(t)| =
∣∣∣∣ 1

3(2π)3

(
Eq+1(t)−

1

2

ˆ
|vq|2(x, t) dx

)∣∣∣∣ ≤ 1

4
δq+1 .

The analogue of the strict shortness in the case of isometries is given by the positive
definiteness of Rq = ρqId + R̊q. However, estimates (54) together with (60) lead to
a stronger condition: it is easy to verify that for any given r > 0 with a sufficiently
small choice of c0 (depending only on r), these two estimates ensure that

(61) Rq(x, t) ∈ Cr for all (x, t) and ‖Rq‖0 ∼ δq+1

(recall definition (19) of the cone Cr).

7.2. The oscillatory ansatz. In analogy with Nash’s approach to Proposition
4.1, our strategy is to make wq a highly oscillatory vector field. Guided by the role
of Nash spirals in (12), let us consider

(62) wo(x, t) = W
(
vq(x, t), Rq(x, t), λq+1x, λq+1t

)
,

where W is a function which we are going to specify next.14

First of all, the oscillatory nature of the perturbation requires us to impose that
W is periodic in the variable ξ ∈ T3. Next, observe that vq+1 must satisfy the
divergence-free condition div vq+1 = 0, and v + wo is not likely to fulfill this: we
need to add a suitable correction wc in order to satisfy it. Indeed a stronger analogy
with the isometric embedding problem would be to consider first a vector potential
for vq, namely to write vq as ∇× zq for some smooth zq. Subsequently, we would
like to perturb zq to a new

zq+1(x, t) = zq(x, t) +
1

λq+1
Z(v(x, t), R(x, t), λq+1x, λq+1t) .

Computing vq+1 := ∇× zq+1, we get

vq+1(x, t) = vq(x, t) + (∇ξ × Z)(v(x, t), R̃(x, t), λx, λt)︸ ︷︷ ︸
(P )

+O

(
1

λ

)
.

The term (P ) would correspond to wo if we were able to find a vector potential Z
for W which is periodic in ξ. This requires div ξW = 0 and 〈W 〉 = 0, where we use
the notation 〈, 〉 to denote the average in the ξ variable.

14The pressure pq+1 will be defined similarly as pq+1 = pq + P (vq, Rq , λq+1x, λq+1t), but we

will not enter into the details in our discussion, since its role is secondary anyway.
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Similar considerations (see for instance [80]) lead to the following set of conditions
that we would like to impose on W :

• ξ �→ W (v,R, ξ, τ ) is 2π-periodic with vanishing average, i.e.,

(H1) 〈W 〉 := 1

(2π)3

ˆ
T3

W (v,R, ξ, τ ) dξ = 0;

• The average stress is given by R, i.e.,

(H2) 〈W ⊗W 〉 = R

for all R ∈ Cr;
• The “cell problem” is satisfied:

(H3)

⎧⎨
⎩

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = 0,

div ξW = 0 ,

where P = P (v,R, ξ, τ ) is a suitable pressure;
• W is smooth in all its variables and satisfies the estimates

(H4) |W | � |R|1/2, |∂vW | � |R|1/2, |∂RW | � |R|−1/2.

Observe that (H2) corresponds to (46) and (49), (H3) arises from plugging the
oscillatory ansatz (62) into Euler, and (H4) are estimates consistent with (H2).

As a consequence of (H1)–(H2), we obtainˆ
T3

|vq+1|2 dx ∼
ˆ
T3

|vq|2 dx+

ˆ
T3

〈|W |2〉 dx =

ˆ
T3

|vq|2 dx+ 3(2π)3ρq(t),

so that (60) can be ensured inductively. The main issues are therefore

• to show that indeed it is possible to send δq to 0 as q ↑ ∞ (so that the
scheme converges),

• and to obtain a relation between δq and λq in the form of (53).

We will see that, if we were able to find a “profile” W satisfying (H1), (H2), (H3),
and (H4), then the iteration proposed so far would lead to a proof of Onsager’s
conjecture.

7.3. 1
3 -scheme. Assuming the existence of a such a profile W , the next stress

tensor R̊q+1 would then be defined through

R̊q+1 = − div−1
[
∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1

]
= − div−1

[
∂twq+1 + vq · ∇wq+1

]
︸ ︷︷ ︸

=:R̊
(1)
q+1

− div−1
[
div (wq+1 ⊗ wq+1 −Rq) +∇(pq+1 − pq)

]
︸ ︷︷ ︸

=:R̊
(2)
q+1

− div−1
[
wq+1 · ∇vq

]
︸ ︷︷ ︸

=:R̊
(3)
q+1

,(63)
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where div−1 is the operator of order −1 from Lemma 7.1. Since we are assuming
that the size of the corrector wc is negligible compared to wo, we will discuss the
corresponding terms where wo replaces wq.

First expand W (v,R, ξ, τ ) as a Fourier series in ξ. We then could compute

(64) R̊(3) = div−1
[
wo · ∇vq

]
= div−1

∑
k∈Z3,k �=0

ck(x, t)e
iλq+1k·x ,

where the coefficients ck(x, t) vary much more slowly than the rapidly oscillating

exponentials. When we apply the operator div−1, we can therefore treat the ck
as constants and gain a factor 1

λq+1
in the outcome: a typically “stationary phase

argument”. Note that it is crucial that c0 vanishes: this is in fact the content of
condition (H1).

Using (H4), we can estimate the size of each term ck as

‖ck‖0 � ‖W‖0‖∇vq‖0 � ‖Rq‖1/20 ‖∇vq‖0.
Applying (52) and (61), we arrive at

(65) ‖R̊(3)
q+1‖0 �

δ
1/2
q+1δ

1/2
q λq

λq+1
.

Coming to the two remaining terms, observe that one needs to differentiate the
perturbation wo in x and t, where there is a distinction between “slow” and “fast”
derivatives—we refer to “fast derivatives” if the term involves a factor of λq+1. For
instance,

∂tW = ∂vW∂tvq + ∂RW∂tRq︸ ︷︷ ︸
slow

+λq+1∂τW︸ ︷︷ ︸
fast

.

Owing to condition (H3) (the “cell problem”) the fast derivatives in R̊
(1)
q+1 + R̊

(2)
q+1

vanish identically. Hence, by some abuse of notation, we may write

R̊
(1)
q+1 = div−1

[
(∂t + vq · ∇)slowW

]
,(66)

R̊
(2)
q+1 = div−1

[
div slow(W ⊗W −Rq)

]
.(67)

Observe that the expression in (66) is linear in W ; hence, the same stationary phase
argument as above applies. We calculate

(∂t + vq · ∇)slowW = ∂vW (∂t + vq · ∇)vq + ∂RW (∂t + vq · ∇)Rq

so that, writing as before,

R̊
(1)
q+1 = div−1

∑
k∈Z3,k �=0

c′k(x, t)e
iλq+1k·x

for some c′k. This time, using (H4), we have

‖c′k‖0 � ‖Rq‖1/20 ‖(∂t + vq · ∇)vq‖0 + ‖Rq‖−1/2
0 ‖(∂t + vq · ∇)Rq‖0.

From (52), (59), and (61) we then deduce

‖R̊(1)
q+1‖0 � 1

λq+1

(
δ
1/2
q+1δqλq + δ

1/2
q+1δ

1/2
q λq

)
�

δ
1/2
q+1δ

1/2
q λq

λq+1
.

Finally, observe that in (67) we have 〈W ⊗ W 〉 = Rq because of condition (H2),
so that once more, in the expansion of W ⊗W − Rq as a Fourier-series in ξ, there
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is no term k = 0. Hence, the same stationary phase estimate can be applied once
more. Writing

R̊
(2)
q+1 = div−1

∑
k∈Z3,k �=0

c′′k(x, t)e
iλq+1k·x

and using (H4), we have the estimate

‖c′′k‖0 � ‖W‖0‖∂vW‖0‖Dvq‖0 + ‖W‖0‖∂RW‖0‖DRq‖0
� ‖Rq‖0‖Dvq‖0 + ‖DRq‖0,

so that

‖R̊(2)
q+1‖0 � 1

λq+1

(
δq+1δ

1/2
q λq + δq+1λq

)

� δq+1λq

λq+1
.

(68)

Summarizing, we obtain

(69) ‖R̊q+1‖0 �
δ
1/2
q+1δ

1/2
q λq

λq+1
.

Of course, this is just one of the estimates for (vq+1, pq+1, Rq+1) in (51)–(61); similar
ones should be obtained for all the other quantities. However, (69) already implies
a relation between δq and λq. Indeed, comparing it with (54), the inductive step
requires

δq+2 ∼
δ
1/2
q+1δ

1/2
q λq

λq+1
.

Assuming λq ∼ λq for some fixed λ 
 1, this would lead to

(70) δ1/2q ∼ λ−q/3 ∼ λ−1/3
q ,

which, comparing with (36), gives θ0 = 1/3 as the critical Hölder regularity.
In the derivation above we have assumed the existence of W with properties

(H1)–(H4). Next we will discuss how one could construct such W . As it turns out
we are not able to fulfill all the conditions without further modifications. These
modifications will eventually lead to additional error terms and are responsible for
the lower threshold exponent θ0 = 1/5 in Theorem 6.2(ii).

7.4. Beltrami flows. In this section we show how almost all conditions on the
function W = W (v,R, ξ, τ ) can be fulfilled. Let us first examine the simple case
in which we set v = 0: it is then possible to construct a function Ws(R, ξ) =
W (0, R, ξ, τ ) satisfying the constraints (H1)–(H4). The basic building block is given
by Beltrami flows, which form the counterpart of the Nash spirals. Start with the
identity

div (U ⊗ U) = U × curlU − 1
2∇|U |2 ,

for smooth 3-dimensional vector fields U . In particular any eigenspace of the curl
operator (i.e., the solution space of the system⎧⎨

⎩
curlU = λ0U,

divU = 0
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for λ0 constant) leads to a linear space of stationary flows of the incompressible
Euler equations. These can be written as

(71)
∑

|k|=λ0

akBke
ik·ξ

for normalized complex vectors Bk ∈ C3 satisfying

|Bk| = 1, k ·Bk = 0 and ik ×Bk = λ0Bk,

and arbitrary coefficients ak ∈ C. Choosing B−k = −Bk and a−k = ak ensures
that U is real-valued. A calculation then shows

(72) 〈U ⊗ U〉 = 1

2

∑
|k|=λ0

|ak|2
(
Id− k ⊗ k

|k|2
)
.

Moreover, recalling the condition that W must be 2π-periodic in the ξ variable, we
impose that k ∈ Z3. The identity (72) leads to the following decomposition lemma
which is the analogue of Lemma 4.3.

Lemma 7.2. For every N ∈ N, we can choose 0 < r0 < 1 and λ0 > 1 with the
following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z
3 : |k| = λ0}, j ∈ {1, . . . , N},

and smooth positive functions

γ
(j)
k ∈ C∞ (Br0(Id)) , j ∈ {1, . . . , N}, k ∈ Λj ,

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) for each R ∈ Br0(Id), we have the identity

(73) R =
1

2

∑
k∈Λj

(
γ
(j)
k (R)

)2
(
Id− k

|k| ⊗
k

|k|

)
∀R ∈ Br0(Id) .

This lemma, taken from [37] (see also [46] for a geometric proof) allows us to
choose the amplitudes as

(74) ak =
√
trRγ

(j)
k

(
R

1
3 tr R

)

for any R ∈ Cr0 . With this choice of ak = ak(R), we can then set

Ws(R, ξ) :=
∑

k∈Λ(1)

ak(R)Bke
ik·ξ

(defined through the Beltrami flow relation (71)). Note that that for such Ws the
sizes of W and of any R-derivative of W satisfy estimates (H4).

8. The transport problem and the
1
5 -threshold

Having obtained a profile W (0, R, ξ, τ ) = Ws(R, ξ), it seems natural to extend
W by imposing that ∂τW + v · ∇ξW = 0, leading to the formula

(75) W (v,R, ξ, τ ) = Ws(R, ξ − vτ ) =
∑

k∈Λ(1)

ak(R)Bke
i(k−vτ)· .

However the latter fails to satisfy (H4), because |∂vW (v,R, ξ, τ )| ∼ |R|1/2|τ |. This is
a serious problem: observing that τ is the “fast time” variable, in the construction
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(62) τ = λq+1t, leading to an additional factor λq+1 in the estimates for R̊
(1)
q+1 and

R̊
(2)
q+1: this loss destroyes any hope that the scheme might converge.

In [37,38] a “phase function” φk(v, τ ) was introduced to deal with the transport
part of the cell problem. By considering W of the form

(76)
∑

|k|=λ0

ak(R)φk(v, τ )Bke
ik·ξ,

the cell problem in (H3) leads to the equation

∂τφk + i(v · k)φk = 0 .

Since the exact solution φk(v, τ ) = e−i(v·k)τ is incompatible with the requirement
(H4), an approximation is used15 such that

∂τφk + i(v · k)φk = O
(
μ−1
q

)
, |∂vφk| � μq,

for some new parameter μq. This leads to the following corrections to (H3) and
(H4): (H3) is only satisfied approximately,

∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = O(μ−1
q ),

and in (H4) the second inequality is replaced by

|∂vW | � μq|R|1/2.

8.1. Flow and CFL condition. A further improvement was obtained in [14],
following an idea first introduced by Isett in [46]. We change the ansatz (76) on W
and look for a perturbation wo which has the form

(77) wo(x, t) = Ws(Rq(x, t), λq+1Φq(x, t)) =
∑

k∈Λ(1)

ak(Rq(x, t))Bke
iλq+1Φq(x,t) ,

where Φq solves the transport equation

(78) ∂tΦq + (vq · ∇x)Φq = 0 .

With (77), we would have

(79) R̊
(1)
q+1 =

∑
k∈Λ(1)

∇ak(Rq)(∂tRq + (vq · ∇)Rq)e
iλq+1Φq

and, assuming that DΦq(x, t) is not too far from the identity, the stationary phase
argument together with the bound (59) would lead to

(80) ‖R̊(1)‖0 � δ
3/2
q+1δ

1/2
q λqλ

−1
q+1 .

However, since ‖Dvq‖0 → ∞, we expect the deformation matrix DΦq to be con-
trollable only for short times. More precisely, by a well-known elementary estimate
on ODEs, if Φq(x, t0) = x, then

(81) ‖DΦq(·, t)− Id‖0 � ‖∇vq‖0|t− t0| � δ
1/2
q λq|t− t0|

for |t− t0| � (δ
1/2
q λq)

−1. The latter is a typical “CFL condition”; cf. [28].
To handle this problem, we proceed as in [14] and consider a partition of unity

(χj)j on the time interval [0, T ] such that the support of each χj is an interval Ij

15To be precise, the approximation involves a partition of unity over the space of velocities
and the use of eight distinct families Λ(j) in Lemma 7.2.
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of size 1
μq

for some μq 
 1. In each time interval Ij we set Φq,j to be the solution

of the transport equation (78) which satisfies

Φq,j(x, tj) = x,

where tj is the center of the interval Ij . Recalling that ‖Dvq‖0 � δ
1/2
q λq, (81) leads

to

(82) ‖DΦq,j‖0 = O(1) and ‖DΦq,j − Id‖0 � δ
1/2
q λq

μq

provided

(83) μq ≥ δ
1/2
q λq,

an estimate we will henceforth assume. Observe also that |∂tχj | � μq.
The new fluctuation will take the form

wo =
∑
j

χj(t)
∑

k∈Λ(i(j))

ak(Rq)Bke
iλq+1k·Φq,j(84)

=
∑
k,j

ak,j(Rq)φkjBke
iλq+1k·x ,(85)

where:

• i(j) equals 1 if j is odd and 2 if j is even;
• Λ(1) and Λ(2) are two disjoint families of vectors from Lemma 7.2;
• the phase functions φkj are given by eiλq+1k·(Φj(x,t)−x).

In computing now R̊
(1)
q+1 we get, compared to (79), an additional term of the form

div−1

⎡
⎣∑

j

∂tχj(t)
∑

k∈Λ(i(j))

ak(Rq)φkjBke
iλq+1k·x

⎤
⎦ ,

and in view of |∂tχj | � μq the estimate (80) becomes

(86) ‖R̊(1)
q+1‖0 � δ

3/2
q+1δ

1/2
q λqλ

−1
q+1 + δ

1/2
q+1μqλ

−1
q+1

(83)

� δ
1/2
q+1μqλ

−1
q+1 .

As for R̊
(3)
q+1 we can assume that (65) still holds. On the other hand the estimate

for R̊
(2)
q+1 involves certainly some new error terms. First of all, since the profile Ws

solves divξ(Ws ⊗Ws) +∇ξP = 0, there are no “fast derivatives” in the expression

for R̊
(2)
q+1. Hence

(87) R̊(2) = div−1
[
div slow(wo ⊗ wo −Rq)

]
.

We next compute

wo ⊗ wo =
1

2

∑
k,j

χ2
j |ak,j |2

(
Id− k ⊗ k

|k|2

)

+
∑

j,j′,k+k′ �=0

χjχj′akjak′j′φkjφk′j′Bk ⊗Bk′eiλq+1(k+k′)·x

= Rq +
∑
k′′ �=0

ck′′(x, t)eiλq+1k
′′·x .

(88)
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Since ‖∇φkj‖0 ≤ δ
1/2
q λqλq+1μ

−1
q according to (82), we can estimate

‖∇ck′′‖0 � δq+1λq + δq+1δ
1/2
q λqλq+1μ

−1
q .

Hence, by the stationary phase estimate, we expect

(89) ‖R̊(2)
q+1‖0 � δq+1λqλ

−1
q+1 + δq+1δ

1/2
q λqμ

−1
q .

Combining (65), (86), and (89) (and taking into consideration (83)), we conclude

(90) ‖R̊q+1‖0 � δ
1/2
q+1μqλ

−1
q+1 + δq+1δ

1/2
q λqμ

−1
q .

Optimizing in μq, we then reach

(91) ‖R̊q+1‖0 � δ
3/4
q+1δ

1/4
q λ

1/2
q λ

−1/2
q+1 ,

namely to

δq+2 ∼ δ
3/4
q+1δ

1/4
q λ

1/2
q λ

−1/2
q+1 .

Plugging (36) in the latter identity and taking logarithms leads to θ0 = 1
5 .

9. h-principle for Hölder solutions of Euler

The Beltrami flows together with the transport ansatz explained in the previous
subsections settle the issue of convergence (at least for Hölder exponents θ < 1/5),
but they are not sufficient to conclude the h-principle statement of Theorem 6.3.
Indeed, the problem is reminiscent of the difference between the global form of the
Nash stage in Proposition 4.1 (which is based on the global decomposition (18)) and
the local version suitable for the iteration based on Lemma 4.3. It turns out that
even when we increase the number of modes, the Beltrami flows cannot generate
arbitrary positive definite stresses (in other words the expression for 〈U ⊗ U〉 in
(72) cannot be an arbitrary positive definite matrix R; the set of possible R which
can be generated has been computed in [21]).

Nevertheless, there is a very simple set of stationary flows (which we will call
“Mikado flows”) based on pipe flow, which can generate all R. These flows were
introduced in [31].

Lemma 9.1. For any compact subset N consisting of positive definite 3 × 3 ma-
trices, there exists a smooth vector field

W : N × T
3 → R

3, i = 1, 2,

such that, for every R ∈ N

(92)

⎧⎨
⎩

div ξ(W (R, ξ)⊗W (R, ξ)) = 0,

div ξW (R, ξ) = 0,

and

〈W 〉 = 0,(93)

〈W ⊗W 〉 = R.(94)

The first step in the proof of Lemma 9.1 is the following global version of Lemma
4.3 from [63] (that is used to obtain the global decomposition (18)):



276 CAMILLO DE LELLIS AND LÁSZLÓ SZÉKELYHIDI JR.

Lemma 9.2. For any compact subset N of positive definite 3 × 3 matrices, there
exists λ0 ≥ 1 and smooth functions Γk ∈ C∞(N ; [0, 1]) for any k ∈ Z3 with |k| ≤ λ0

such that

(95) R =
∑

k∈Z3,|k|≤λ0

Γ2
k(R)k ⊗ k for all R ∈ N .

The proof of Lemma 9.1 is rather simple. The vector field W (R, ·) will take the
form

(96) W (R, ξ) =
∑

k∈Z3,|k|≤λ0

Γk(R)ψk(ξ)k .

The functions ψk are defined as ψk(ξ) = gk(dist(ξ, �k,pk
)) for some gk ∈ C∞

c ([0, rk)),
rk > 0, and �k,pk

is the T3-periodic extension of the line {pk + tk : t ∈ R} passing
through pk in direction k. Since there are only a finite number of such lines, we
may choose pk and rk > 0 in such a way that

(97) suppψi ∩ suppψj = ∅ for all i �= j.

ThusW consists of a finite collection of disjoint straight tubes such that in each tube
W is a straight pipe flow and outside the tubes W = 0. In particular W satisfies the
stationary “pressureless” Euler equations (92). Furthermore, the profile functions
gk can be chosen so that

´
T3 ψk(ξ) dξ = 0 and
 
T3

ψ2
k(ξ) dξ = 1 for all k.

Then (93) is easily satisfied, and because of (97) we also have 
T3

W ⊗W dξ =
∑
k

 
T3

Γ2
k(R)ψ2

k(ξ)k ⊗ k dξ =
∑
k

Γ2
k(R)k ⊗ k = R.

Therefore (94) is satisfied.
This set of flows can be used easily to obtain one initial perturbation of an

arbitrary starting subsolution (v0, p0, R0). Indeed, the transport ansatz from (77)
can be used without a temporal cutoff: this time we are not interested in precise
estimates for the perturbation, the goal is just to obtain a sufficiently small new
Reynolds term R̊1 so that (61) is satisfied. After this single step we then obtain
(v1, p1, R1) to which the iteration with Beltrami flows described in the previous
sections can be applied. Ironically, at the moment we are not able to carry out the
iteration using Mikado flows—the difficulty is in controlling the interaction of two
sets of Mikado flows in the temporal overlap regions Ij ∩ Ij+1 (cf. (87)).

10. Further considerations and open questions

10.1. Borisov’s rigidiy theorem and the threshold 1
2 . In [70] Pogorelov in-

troduced the notion of bounded extrinsic curvature for surfaces in R3. Loosely
speaking, an immersed surface has bounded extrinsic curvature if the area distor-
tion of its Gauss map N is bounded. If the immersion is smooth, this would be
a consequence of Gauss’s classical theorem; however, the definition makes sense as
soon as N is a well-defined map and thus, for instance, if the immersion is merely
C1. A consequence of a fundamental result of Pogorelov is the following
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Theorem 10.1. If u is a C1 immersion of a 2-dimensional Riemannian manifold
(M, g) with positive Gauss curvature and u(M) has bounded extrinsic curvature in
the sense of Pogorelov, then locally the immersed surface is convex.

Higher regularity for the immersed surface then follows from the (nowadays
classical) regularity theory for the Monge–Ampère equations (cf. [70,71]). The main

point in Borisov’s works [5–8] is to establish that C1, 23+ε immersions of surfaces with
positive Gauss curvature have bounded extrinsic curvature.

In [26] Sergio Conti and the two authors observed that Borisov’s statement could
be recovered from the validity of the integral identity

(98)

ˆ
V

f(N(x))κ(x) dA(x) =

ˆ
S2

f(y)deg (y, V,N) dσ(y),

where

• V is an arbitrary open subset of M ;
• f is any bounded function on S2;
• deg (y, V,N) is the Brouwer degree of the map N |V at y;
• dA denotes the Riemannian volume form on (M, g);
• dσ is the standard surface measure on S

2.

For smooth immersions u (98) is equivalent to Gauss’s theorem. The main point

of [26] is that the validity of (98) can be extended with little effort to C1, 23+ε

immersions u: if we regularize u by a standard mollification procedure, although
a naive computation seems to require C1,1 regularity for the convergence of the
left hand side, the commutator estimate of Lemma 5.4 allows the lowering of the
regularity to C1, 23+ε. We also refer to [3] for a partial generalization to hypersurfaces
of higher dimension.

There are a number of reasons to believe that this point of view might lower the
rigidity threshold to 1

2 .

First of all if C ⊂ R2 is a 1-dimensional set and N : R2 → R2 is a C0, 12+ε map,
then the image N(C) has zero Lebesgue measure. This is a simple elementary fact;
cf. [26]. Moreover, for every bounded open set U ⊂ R2 with Lipschitz boundary,
deg (·, V,N) ∈ L1(R2). This has been proved recently (and independently) by Ol-
bermann [67] and Züst [86], with rather different arguments. In fact both references
have much more general results, valid in several dimensions and general targets: [67]
contains a suitable Lp estimate, whereas, although the arguments in [86] yield only
L1 estimates, they allow for different Hölder exponents for the components of the
map.

In particular, the C1, 12+ε regularity is enough to make sense of the right-hand side
of (98) when V has a Lipschitz boundary and f is an arbitrary bounded function:
for a general C1 immersion one must instead require that f is compactly supported
in S2 \N(∂V ).

Moreover in [86] Züst has observed that the L1 bound on the degree combined
with the computations of [26] is enough to show the following

Proposition 10.2. If u : M→R
3 is a C1, 12+ε immersion of a smooth 2-dimensional

Riemannian manifold (M, g) and f = 1, then the identity (98) is valid for any open
subset V ⊂ M with Lipschitz boundary.
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The rigidity threshold could then be lowered to 1
2 if the following conjecture were

true (Züst in [86] has proposed an argument for the conjecture, but unfortunately
it contains a crucial gap).

Conjecture 10.3. Assume N : R2 ⊃ Ω → R2 is map in C
1
2+ε with the property

that ˆ
deg (y,N, V ) dy ≥ 0

for every open V � Ω with Lipschitz boundary. Then deg (y,N, V ) is nonnegative
for every open V � Ω and every y �∈ N(∂V ).

10.2. Further results on incompressible Euler and other equations. The
techniques introduced in the papers [37, 38] have been extended to prove several
other results in the incompressible Euler equations and for other equations in fluid
dynamics.

Concerning the Euler equations, in [21] Choffrut showed that the same tools
can be suitably modified to produce Hölder-continuous dissipative weak solutions
when the space domain is the 2-dimensional torus T2. In [30] Daneri gave a first
construction which produces infinitely many solutions with the same initial data
and have nonincreasing energy. This result was improved further in [31], where
the Hölder regularity of [30] has been pushed to match that of Theorem 6.2(ii).
The same paper also shows that the initial data allowing for such a nonuniqueness
theorem are indeed dense in L2. In [48] Isett and Oh produced Hölder solutions
which are compactly supported in time and space when the space domain is R3.

Remarkably, in [49] Isett and Vicol have succeeded in implementing a multistep
iteration scheme which produces Hölder continuous solutions to active scalar equa-
tions when the multiplier is not odd. This combines the ideas of [37] with previous
techniques used in [27, 75, 77] to produce bounded solutions when the multiplier is
even. In [82,83] Tao and Zhang have extended the techniques of [37,38] to produce
similar results for the Boussinesq equation.

In the cases of bounded solutions it has been shown in [35] that convex integra-
tion can be used to produce very irregular solutions which satisfy the local energy
inequality

(99) ∂t
|u|2
2

+ div

((
|u|2
2

+ p

)
u

)
≤ 0 ,

and that therefore the latter condition is still not enough to ensure uniqueness of
a weak solution. This remains true even for initial data which have very mild dis-
continuities, as shown by the second author in [77]. In fact the same constructions
can be used in compressible fluid dynamics to disprove the uniqueness of entropy
admissible weak solutions for some regular (more precisely Lipschitz) initial data,
cf. [19, 20, 35]. It is presently not known whether one could use techniques similar
to those of [37] to construct continuous solutions which satisfy the local energy
inequality (99). In particular it would be of some interest to disprove the unique-
ness of piecewise continuous entropy admissible weak solutions in compressible fluid
dynamics.
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[30] S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equa-
tions, Comm. Math. Phys. 329 (2014), no. 2, 745–786, DOI 10.1007/s00220-014-1973-5.
MR3210150
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Lit., Moscow-Leningrad, 1951. MR0050909
[70] A. V. Pogorelov, Extrinsic geometry of convex surfaces, American Mathematical Society,

Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Trans-
lations; Translations of Mathematical Monographs, Vol. 35. MR0346714

[71] I. H. Sabitov, Regularity of convex domains with a metric that is regular on Hölder classes
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[73] Ludwig Schläfli, Nota alla memoria del sig. Beltrami, “Sugli spazii di curvatura costante”.,
Annali di Mat. (2) 5 (1871), 178–193 (Italian).

[74] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation,
Comm. Pure Appl. Math. 50 (1997), no. 12, 1261–1286, DOI 10.1002/(SICI)1097-
0312(199712)50:12〈1261::AID-CPA3〉3.3.CO;2-4. MR1476315

[75] R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc.
24 (2011), no. 4, 1159–1174, DOI 10.1090/S0894-0347-2011-00705-4. MR2813340

[76] M. Spivak, A comprehensive introduction to differential geometry. Vol. V, 2nd ed., Publish
or Perish, Inc., Wilmington, Del., 1979. MR532834
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[79] László Székelyhidi Jr, The h-principle and turbulence, ICM 2014 Proceedings Volume (2014).
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ienelement., Zürich. Naturf. Ges. 61, 40-72, 1916.
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